NUMTs in the sponge genome reveal conserved transposition mechanisms in metazoans.
نویسندگان
چکیده
The transposition of parts of the mitochondrial (mt) genetic material into the nuclear genome (NUMTs) occurs in a wide range of eukaryotes. Here, we show that NUMTs exist for nearly all regions of the mt genome in the demosponge Amphimedon queenslandica, a representative of the oldest phyletic lineage of animals. Because the sponge NUMTs are small and noncoding, and transposed via a DNA intermediate, as in eumetazoans, we infer that the transpositonal processes underlying NUMT formation in contemporary animals existed in their most recent common ancestor. In contrast to most bilaterians, Amphimedon NUMTs are inserted into regions of high gene density. Given the common features of metazoan NUMTs, the reduction in animal mt genome sizes relative to other eukaryotes may be the product of the mt DNA transposition mechanisms that evolved along the metazoan stem.
منابع مشابه
Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny.
Homoplasy-free characters are a valuable and highly desired tool for molecular systematics. Nuclear sequences of mitochondrial origin (numts) are fragments of mitochondrial DNA that have been transferred into the nuclear genome. numts are passively captured into genomes and have no transposition activity, which suggests they may have utility as phylogenetic markers. Here, five fully sequenced p...
متن کاملOrigin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex.
The evolution of cadherins, which are essential for metazoan multicellularity and restricted to metazoans and their closest relatives, has special relevance for understanding metazoan origins. To reconstruct the ancestry and evolution of cadherin gene families, we analyzed the genomes of the choanoflagellate Salpingoeca rosetta, the unicellular outgroup of choanoflagellates and metazoans Capsas...
متن کاملQuantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health
Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through su...
متن کاملMolecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes
The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutiona...
متن کاملDNA Replication and Strand Asymmetry in Prokaryotic and Mitochondrial Genomes
Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2011